ern North America. George Mason Univ. Press, Fairfax, Virginia. 282 pp.) who demonstrated that amphibians and earthworms were the important foods consumed by adults and juveniles (35–90%).

All events recorded from this study for the prairie kingsnake (Lampropeltis calligaster calligaster) involved small mammals. This is similar to what has been reported by other investigations. Klimstra (1959). Herpetologica 15:1–5 discovered that prairie kingsnake prey items consisted only of small mammals. Likewise, a study by Fitch (1978. Trans. Kansas Acad. Sci. 81:353–363) found that the prairie kingsnake was primarily a mammal eater, with snakes and lizards making up a small percentage of the food.

Heske (1999. Illinois Natural History Survey Final Report for FY 99) found moderate to high numbers of small mammals at PRSNA from 1995 to 1999. Therefore we would expect mammals to be a large portion of the diets of L. calligaster and T. sirtalis.

Body measurements are presented (Table 1) because size of the snake influences the type or quantity of prey taken. Juvenile snakes will have a high percentage of soft-bodied prey items such as invertebrates or amphibians, while adults will readily consume larger vertebrate species (Mushinsky. 1987. In Seigel et al. [eds.], Snakes: Ecology and Evolutionary Biology, pp. 302–334. Macmillan Publishing Co. New York; See also Tucker 2000. Herpetol. Rev. 31:106–107).

The information presented here is unique in two ways. First our data show a different prey preference for garter snakes found at PRSNA, as compared to the other studies compiled by Ernst and Barbour (op. cit.). This information reinforces findings that opportunistic feeders may have a site specific diet (Kephart 1982. Oecologia 52:287–291; Gregory and Nelson 1991. Can. J. Zool. 69:988–994). Second, the percent of witnessed predation events on birds was much higher than the percent of avian items found in stomachs. This may have occurred because items such as eggs and nestlings would pass quickly through the digestive system, and would not have been a discernable part of the diet when using regurgitation. This could lead to an underestimate of avian items consumed when regurgitation is the only method used.

We acknowledge the financial support of the Illinois Council for Food and Agricultural Research (C-FAR), and the Illinois Department of Natural Resources Division of Natural Heritage Small Wildlife Preservation Fund. We thank Eric Kershner and Jeff Walk for field notes on the observations of predation events, prey identification, and review of this manuscript. We also thank field assistant Nisa Tawjareon for many hours of snake collection.

Submitted by DANIEL J. OLSON and RICHARD E. WARNER, Department of Natural Resources and Environmental Sciences, University of Illinois, 350 Burnsides Lab, 1208 West Pennsylvania Avenue, Urbana, Illinois 61801, USA.

PHILODRYS OLFERSII (NCN). COURTSHIP. Little is known about courtship and mating aggregations of Neotropical snakes. On 23 March 1998 at 1800 h (air temp = 25°C), we observed courtship behavior involving four adult Philodrys olfersii. The snakes were observed on a tree branch ca. 5 m above the ground at CISM (Campos de Instruição de Santa Maria, RS, south Brazil, 29°43'S, 53°44'W). A female and two males (SVL 910 mm, 700 mm, 760 mm; ZUFSM 1596, 1597, 1598, respectively; Setor de Zoologia, Universidade Federal de Santa Maria) were captured after a few minutes of observation when they tried to flee. The fourth snake escaped.

Before capture, the males alternately rubbed the female and stayed in direct contact with her. During this process, we observed the following behaviors: undulation, dorsal advance, and dorsal body looping. These behaviors are consistent with the Tactile-Chase phase of courtship (Gillingham 1987. In Seigel et al. [eds.], Snakes: Ecology and Evolutionary Biology, pp. 184–209. Macmillan Publ. Co., New York). No aggressive behaviors or the latter phases of courtship (tactile alignment, intromission, and coitus) were observed. This appears to be the first record of courtship behavior for P. olerfesii in the field.

We thank Augusto Shinnya Abe for comments on this manuscript.

Submitted by SONIA T. Z. CECHIN, Departamento de Biologia, Universidade Federal de Santa Maria, P.O. Box 1082, Santa Maria, Rio Grande do Sul, Brazil (e-mail: cechin2@ccne.ufsm.br), and PAULO AFONSO HARTMANN, Pós-Graduação em Ciências Biológicas-Zoologia, Instituto de Biociências, Universidade Estadual Paulista, C.P. 199, 13506-900, Rio Claro, São Paulo, Brazil (e-mail: pahart@rc.unesp.br).

THAMNOPHIS EQUES (Mexican Garter Snake) and THAMNOPHIS SCALARIS (Mexican Alpine Blotched Garter Snake). PREDATOR/PREY. On 7 June 1999 (1115 h), we captured a female Thamnophis eques (555 mm SVL, 130 mm TL, 70 g). It was under a rock near a pond, surrounded by Salix sp., at the Area de Conservación e Investigación Ecológica El Bordo, Las Maravillas (99°41'W, 19°24'N), 17 km NW of Toluca City, México (elevation 2550 m). The snake was palped and regurgitated one fragment (60 mm, 3.0 g) of a partially digested T. scalaris (22 ventral scales). On 29 June 1999, we captured a female T. eques (570 mm SVL, 150 mm TL, 140 g) and a female T. scalaris (430 mm SVL, 110 mm TL, 40 g). The snakes were placed in the same bag, and after two hours the T. eques was observed consuming the T. scalaris. The T. scalaris was being ingested head first, and 1/4 of its body had been swallowed when we checked the bag.


Submitted by CRYSSTIAN SADIEL VENEGAS-BARRERA and JAVIER MANJARREZ, Laboratorio de Biología Evolutiva, Centro de Investigación en Recursos Bioticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100. CP 50000, Toluca, Estado de México, México (e-mail: sadiel@cbnor.mx).